
Motivation Architecture of Angryhex Conclusion

AngryHex: an Angry Birds-playing Agent based on
HEX-programs

Francesco Calimeri 1 Michael Fink 2 Stefano Germano 1

Andreas Humenberger 2 Giovambattista Ianni 1 Christoph Redl 2

Daria Stepanova 2 Andrea Tucci

1Università della Calabria, Dipartimento di Matematica e Informatica,

2Technische Universität Wien, Institut für Informationssysteme

ECAI, Angry Birds Competition–August 19, 2014

1 / 6



Motivation Architecture of Angryhex Conclusion

Motivation

• Approach: design an agent based on
declarative logic programming

• Challenge: plan optimal shots under
consideration of some physics

• Our means: HEX-programs, i.e.
Answer Set Programs (ASP)
with external sources

1 / 6



Motivation Architecture of Angryhex Conclusion

HEX-programs

• HEX-program Π is a set of ASP rules,
where external atoms are allowed in rule bodies:

• &distance[O1,O2](D) is true iff
distance between O1 and O2 is D

• &canpush[ngobject](O1,O2) is true iff
O1 can push O2 given additional info
in the extention of ngobject

O1 O2

D

O2

O1

• Rule1 estimates the likelihood that object O2 falls when O1 is hit

Rule1 : pushDamage(O2 ,P1,P)← pushDamage(O1, ,P1),P1 > 0

&canpush[ngobject](O1,O2),

pushability(O2 ,P2),P = P1 ∗ P2/100.

2 / 6



Motivation Architecture of Angryhex Conclusion

Architecture of Angryhex

• We use the provided framework (browser plugin, vision module, . . . )

• Agent builds on tactics and strategy, both are realized declaratively

• Tactics: reasoning about the next shot is done in a HEX-program Π

• Input: scene info from the vision module (facts of Π)
• Output: desired target (models of Π)

• Strategy: next level to played is computed in an ASP program Π′

• Input: info about the number of times levels were played, best
scores achieved, scores of our agent (facts of Π′)

• Output: next optimal level to be played (models of Π′)

3 / 6



Motivation Architecture of Angryhex Conclusion

HEX Encoding for Tactics

• Physics simulation results are accessed via external atoms:
• decide which O′ intersect with trajectory of a bird after hitting O
• decide whether O1 falls whenever O2 falls . . .

• Tactics in details:
• Consider each shootable target

• Compute the estimated damage on each non-target object

• Rank the targets (=answer sets) using weak constraints

• Consider history: never play a level in the same way again!

4 / 6



Motivation Architecture of Angryhex Conclusion

ASP Encoding for Strategy

• Decides which level to play next based on info about:
• number of times each level was played
• best scores
• our agent’s scores . . .

• Strategy in details:
• First play each level once

• Second play levels in which our score
maximally differs from the best one

• Third play levels in which we played best
and the difference to the second best score is minimal

5 / 6



Motivation Architecture of Angryhex Conclusion

Conclusion and Future Work

• Wrap-up:
• Agent is realized using declarative programming means
• Vision module provided by the organizers is integrated
• Declarative strategy is realized (used to be in java)
• Fixes and improvements in comparison to previous version

• Possible improvements:
• Combine objects which behave like a single one
• Plan over multiple shots
• Improve object recognition and general precision of shots

6 / 6


	Motivation
	Architecture of Angryhex
	Conclusion

