
Motivation Architecture of Angry-HEX Conclusion

Angry-HEX: an Angry Birds-playing Agent
based on HEX-programs

Francesco Calimeri 1 Valeria Fionda 1 Stefano Germano 1

Aldo Marzullo 1 Christoph Redl 2 Zeynep G. Saribatur 2

Peter Schüller 3 Daria Stepanova 4

1Università della Calabria, Dipartimento di Matematica e Informatica,

2Technische Universität Wien, Institut für Informationssysteme

3Marmara University, Computer Engineering Department

4Max Planck Institute of Informatics, Databases and Information Systems

IJCAI, Angry Birds AI Competition – August 23–25, 2017

1 / 6



Motivation Architecture of Angry-HEX Conclusion

Motivation

Approach: design an agent based on
declarative logic programming

Challenge: plan optimal shots under
consideration of some physics

Our means: HEX-programs, i.e.
Answer Set Programs (ASP)
with external sources

1 / 6



Motivation Architecture of Angry-HEX Conclusion

HEX-programs

HEX-program Π is a set of ASP rules,
where external atoms are allowed in rule bodies:

&distance[O1,O2](D) is true iff
distance between O1 and O2 is D

&canpush[ngobject](O1,O2) is true iff
O1 can push O2 given additional info
in the extention of ngobject

O1 O2

D

O2

O1

Rule1 estimates the likelihood that object O2 falls when O1 is hit

Rule1 : pushDamage(O2 ,P1,P)← pushDamage(O1, ,P1),P1 > 0

&canpush[ngobject](O1,O2),

pushability(O2 ,P2),P = P1 ∗ P2/100.

2 / 6



Motivation Architecture of Angry-HEX Conclusion

Architecture of Angry-HEX

We use the provided framework (browser plugin, vision module, . . . )

Agent builds on Tactics and Strategy, both are realized declaratively

Tactics: reasoning about the next shot is done in a HEX-program Π

Input: scene info from the vision module (facts of Π)
Output: desired target (models of Π)

Strategy: next level to played is computed in an ASP program Π′

Input: info about the number of times levels were played, best
scores achieved, scores of our agent (facts of Π′)
Output: next optimal level to be played (models of Π′)

3 / 6



Motivation Architecture of Angry-HEX Conclusion

HEX Encoding for Tactics

Physics simulation results are accessed via external atoms:
decide which O′ intersect with trajectory of a bird after hitting O
decide whether O1 falls whenever O2 falls . . .

Tactics in details:
Consider each shootable target

Compute the estimated damage on each non-target object

Rank the targets (=Answer Sets) using weak constraints

Consider history: never play a level in the same way again!

4 / 6



Motivation Architecture of Angry-HEX Conclusion

ASP Encoding for Strategy

Decides which level to play next based on info about:
number of times each level was played
best scores
our agent’s scores . . .

Strategy in details:
First play each level once

Second play levels in which our score
maximally differs from the best one

Third play levels in which we played best
and the difference to the second best score is minimal

5 / 6



Motivation Architecture of Angry-HEX Conclusion

Conclusion and Future Work

Wrap-up:
Agent is realized using declarative programming means
Vision module provided by the organizers is integrated
Declarative Strategy is realized (used to be in Java)
Fixes and improvements in comparison to previous version

Possible improvements:
Combine objects which behave like a single one
Plan over multiple shots
Improve object recognition and general precision of shots

6 / 6


	Motivation
	Architecture of Angry-HEX
	Conclusion

